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COMMENT 

Superconductivity for relativistic electrons 

D Bailint and A Love$ 
t School of Mathematical and Physical Sciences, University of Sussex, Brighton, Sussex, 
UK 
t Physics Department, Bedford College, University of London, Regent's Park, London 
NW1, UK 

Received 18 December 1981, in final form 8 February 1982 

Abstract. Ginzburg-Landau equations for the pairing of relativistic electrons are derived. 
It is observed that relativistic effects tend to make superconductors type I, and tend to 
make the superconducting phase transition strongly first order. 

In recent papers (Barrois 1979, Bailin and Love 1981a, b, 1982a), the Cooper pairing 
of relativistic quarks has been studied using the Dyson equation for the proper 
self-energy of the quark. (This technique was originally developed by Nambu (1960) 
for the case of non-relativistic electrons.) In the present note, we apply this technique 
to derive Ginzburg-Landau equations for the pairing of relativistic electrons in a BCS 
approximation, and discuss whether the superconductor is likely to be type I or type 
11. We also discuss the superconducting phase transition for relativistic electrons, 
taking account of fluctuations in the electromagnetic field. A similar discussion has 
been given for the case of quark matter (Bailin and Love 1981~). However, in that 
case it is fluctuations in the colour gluon fields that are important. Also the J p  = 0' 
quark Cooper pairs have non-trivial internal symmetry properties coming from colour 
and flavour. Consequently, the results for electrons differ by various group theory 
factors from the results for quarks. In addition, the Cooper pairing of quarks is due 
to colour gluon exchange whert as the pairing we have in mind here is due to phonon 
exchange. This leads to differences in the connection between the detailed gap matrix 
and the order parameter. Our results may be of significance for astrophysical situations, 
or, if extremely precise measurements can be made, for superconductivity in heavy 
metals in the laboratory, alt' lough in this case the relativistic corrections will be masked 
by strong coupling correcticns to BCS theory. They can also be useful in studying the 
implications for non-relativistic superconductors of relativistic theories such as the 
Glashow-Weinberg-Salam model of electroweak interactions (Bailin and Love 
1982b). 

The gap matrix A may be introduced as an effective Lagrangian term 

where e, is the charge conjugate electron field. The inverse electron propagator for 
the Cooper paired system is then 

(2) s-'(p', p )  = ((@ - m + CLYo)(2d4S(P -P') YOA+(P, P')YO 
UP',  P) ( a - m  - c L Y ~ > ( ~ ~ ~ w  -P') 
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where A($, p )  is the momentum-space gap matrix, and 

p = (pj! +m2)l’* ( 3 )  

is the chemical potential. The very small correction to p from the work function in 

the case of a metal has been neglected. S - ’ ( p ’ ,  p )  is a 2 x 2 matrix which acts on , 

and A is a matrix in spinor space. For the diagonal entries of S-’,  p and p‘  are the 
momenta of incoming and outgoing electrons, and for the off-diagonal entries both 
electrons are incoming (or outgoing) with momenta p and - p ’ .  It will sometimes be 
convenient to consider A as a function of the variables 

3 

k = i ( p  + P ’ ) ,  K = p ’  - p .  14) 

If we write 

then the off-diagonal element C ( p ’ , p )  is needed to derive the gap equation. This 
has been evaluated in Bailin and Love (1982a). The gap equation may be obtained 
from the (off-diagonal component of) the Dyson equation shown in figure 1. The 
Matsubara frequency sum may be converted to an integral round an anticlockwise 
contour which includes the poles of C ( p ’ - p + q , q )  but nul those of tanh ($&o), 
where p = (kB T)-’ .  Thus 

A ( p ’ ,  p )  = $ig2 d 4 q ( 2 ~ ) - 4 D ~ ~ ( p  - q ) F A c ( p ‘ - p  +q, q)rB tanh($pqo). (6) 

- - a 
P - P  P 4 P-q-P -P 

Figure 1. Single phonon exchange contribution to the Dyson equation. Cross hatching 
denotes the proper self-energy, and diagonal marking the exact propagator of the electron. 

For generality, we have taken the interaction vertices to he -igrA where rA is some 
Dirac covariant, and the propagator of the exchanged phonon to be  DAB(^ - q )  where 
A and B are spin indices. 

FA g(rA)=%-I, (7) 

gyfce-t= - yF. (8) 

where % is the charge conjugation matrix with the property 

2 112- Keeping only leading terms in [ (q2  + m 1 p ] / p ,  assuming that IKI << 141 (distance 
scales large compared with p i 1 ) ,  and expanding in powers of K up to order K2, 
evaluation of the residues gives 

A(&, K )  = ig2 \ d3q(2~)-3DAB(k -q)PARrB, (9) 
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and 

R = &q, K)[E?I + &q, K)&q, K)]-’” tanh[$P(E!I + &&‘’zl 
-&(q - K)2(P2 /F2E- )  tanh($PE-) sech2($PE-)A(q, K) 

q =(EL,  4), 4‘ = (F ,  -q), ~ - = ( q * + m ~ ) ~ ” - F  (13) 

(12) 

with the notation 

and 

&, K )  = (1 /4~~2)6 - - )A(q ,  Wk +m> 

&q, K )  = rOA+(q, WrO. (14) 

For J p = O +  pairing the most general electron gap matrix consistent with Fermi 
statistics is 

A b ,  K )  = A175 + Azn * yYOY5 + A 3 ~ 0 ~ 5 ,  (15) 

n = 4/l41. (16) 

where AI,  Az, A3 are in general functions of K, and 

In this case when we expand to order A3 (9) simplifies to 

C P  

16cL 
3d dfl  A(”, K )  =- - D A B ( n ,  n ’ )PAyoy5(q+m)rB a +bd*d -7 (q K)’)d 
2p 1 4 T  

(17) 

Much of the content of (17) can be extracted without specifying the exact form of the 
pairing interaction. We may isolate d from (17) by taking traces, and projecting the 
J = 0 part by replacing K’K’ by $Si’Kz. Then 

d = [a + bd*d - ~ ( ~ ~ p ~ / 4 8 p ~ ) K ~ l d a ~ ~  

with 
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Equation (22) is the Ginzburg-Landau equation deriving from the Ginzburg-Landau 
free energy 

where 

t = ( T - Tc)/ T, (25) 

dnlde = @pF/T2. (26) 

and we have used 

(The overall normalisation may be checked by the evaluation of vacuum bubbles.) 
If we specify the form of the pairing interaction we may obtain the detailed gap 

matrix. For example, we may assume scalar phonon exchange, TA = F A  =I, and 
DaB(n, n ' )  = D(n * n ' ) .  Then equation (17) leads to the gap matrix 

(28) 

and d determined by minimising (24). 

substitution in equation (24) 
Coupling to the electromagnetic field is introduced in the usual way by the 

V-VkiqA (29) 

according as the derivative acts on d or d*, where q = 2e is the charge of the Cooper 
pair. The terms 

B2/2po-B * Ho+ipoH;  (30) 

must also be added in the presence of an applied magnetic field. Proceeding as in 
the non-relativistic case (see for example Tinkham 1973 ,  we obtain 

B: = 4pp~(knT,)~/75(3)  (31) 

and 

(in units where h = c = po = 1, e2 /4v  = 1/137). In the ultra-relativistic limit p = P F  

and we have I C ~ C  i, i.e. type I superconductivity, if (kB7'Jp) e 
In the case of a good type I superconductor, we may neglect fluctuations in d 

compared with fluctuations in A, and treat d as a spatially independent constant in 
the critical region. Integrating out the fluctuations in A just as in the non-relativistic 
case (Halperin et a1 1974) leads to the effective free energy functional 

gCfi(d) =G]d)2-e)d)3 +pld14 (33) 

with 

a' = $(dn/de)(T - f c ) / f c ,  (34) 
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where f c  differs from Tc because of fluctuations, 

= & [ ( ~ > P P F / ~ ~ ( ~ B T C ) ~  
and 

3005 

(35)  

A first-order phase transition occurs at the temperature T = Fc (#  Fc) given by 

z = t 2 / 4 p  (37) 
and at the phase transition 

I ~ I T = T ~ = ( / ~ ~ %  

Equation (33) is of the same form as for the discussion of the colour superconducting 
phase transition in quark matter (Bailin and Love 1981~)  but with different expressions 
for the coefficients 5, 6 and 6. Those results presented in our earlier paper which 
depend only on the parameter 

E = ( -pG/ tZ)T=0 (39) 
may be carried over provided we use the modified vaiue 

In the non-relativistic limit, E is very large and the phase transition is weakly first 
order. However, in the ultra-relativistic limit ( p  = p F )  we have E e 1 when ( k B T c / p )  e 

and the transition may well be strongly first order. 
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